Graphit-Rohr
Graphit-Rohr
Reinheit: ≥99%
Graphit-Rohr wird aus Graphitpulver, Harz und Schmiermittel hergestellt, wodurch ein starkes Material mit einer Dicke von mindestens 5 mm entsteht. Es gibt zwei Arten: Harzgraphitrohre, die mit isostatischem Graphit geformt werden, und maschinell bearbeitete Graphitrohre, die durch Hochtemperaturgraphitisierung hergestellt werden. Die Standardlängen betragen 6-7 Meter, wobei kundenspezifische Optionen möglich sind. Die aus hochreinem Petrolkoks und Pechkoks hergestellten Graphitrohre bieten eine hervorragende Wärmeleitfähigkeit, mechanische Festigkeit, chemische Beständigkeit und Temperaturwechselbeständigkeit. Sie werden häufig in Wärmetauschern, in der Elektronik, in der chemischen Verarbeitung, in der Luft- und Raumfahrt sowie in der Automobilindustrie eingesetzt. Wir können hochwertige Graphitrohre mit verschiedenen Spezifikationen und zu wettbewerbsfähigen Preisen liefern und bieten maßgeschneiderte Lösungen für spezifische Anforderungen.
Oder senden Sie uns eine E-Mail an sales@heegermaterials.com.Graphitrohr-Datenblatt
Referenz-Code: | HM2591 |
Reinheit: | ≥99.9% |
Farbe: | Dunkelgrau bis Schwarz |
Chemische Formel: | C |
Werkstoffklassen: | Naturgraphit, synthetischer Graphit, Spezialgraphit, Verbundgraphit |
Die Dichte: | 1,7-1,92 g/cm³ |
Maximale Betriebstemperatur: | Bis zu 3000°C (in inerter Atmosphäre) |
Wärmeleitfähigkeit: | 100-200 W/m-K |
Graphitrohr Beschreibung
Graphit-Rohr wird durch Mischen von Graphitpulver, Harz und Zusatzstoffen hergestellt und anschließend geformt und wärmebehandelt, um starke und stabile Strukturen zu erhalten. Es gibt zwei Haupttypen: gegossene Graphitrohre aus Harz und Rohre, die aus dichtem Graphit hergestellt werden. Graphitblöcke. Diese Rohre haben in der Regel eine Länge von 6 bis 7 Metern, können aber je nach den spezifischen Anforderungen angepasst werden. Graphitrohre bieten aufgrund ihres hohen Kohlenstoffgehalts und des sorgfältigen Herstellungsverfahrens eine ausgezeichnete Leitfähigkeit, eine geringe Wärmeausdehnung und eine hervorragende Beständigkeit gegen chemische Korrosion und Temperaturschocks. Sie werden häufig in anspruchsvollen Umgebungen wie Wärmetauschern, Halbleiterausrüstungen, Luft- und Raumfahrtbaugruppen, chemischen Reaktoren und Automobilsystemen eingesetzt.
Graphitrohr Spezifikationen
Artikel | Einheit | Wert | |
Korngröße | mm | 0.045-4 | |
Schüttdichte | g/cm3 | 1.65-1.95 | |
Widerstandsfähigkeit | μΩ-m | 8.0-11.0 | |
Biegefestigkeit | Mpa | 18-55 | |
Druckfestigkeit | Mpa | 36-100 | |
Der Wärmeausdehnungskoeffizient (WEK) | ×10-6/ ℃ | 2.9-3.0 | |
Esche | % | 0.1-0.3 | |
Rund | Durchmesser | mm | 10-1100 |
Länge | mm | 1-3050 | |
Quadratisch | Länge | mm | ≤3050 |
Breite | mm | ≤1200 | |
Höhe | mm | ≤800 | |
Die Produkte können entsprechend den Bestellanforderungen oder spezifischen Zeichnungen angepasst werden. |
Graphitrohr Merkmale
- Hohe Temperaturbeständigkeit: Schmelzpunkt 3850°C ± 50°C, Siedepunkt 4250°C, ausgezeichnete Leistung bei extremer Hitze.
- Widerstandsfähigkeit gegen thermische Schocks: Geringe Wärmeausdehnung, stabil bei schnellen Temperaturschwankungen ohne Rissbildung.
- Wärmeleitfähigkeit und elektrische Leitfähigkeit: Die Leitfähigkeit ist viel höher als die von rostfreiem Stahl, Kohlenstoffstahl und typischen Nicht-Metallen.
- Schmierfähigkeit: Reibungskoeffizient <0,1, bessere Schmierung bei größeren Graphitflocken.
- Chemische Stabilität: Hohe Beständigkeit gegen Säuren, Laugen und organische Lösungsmittel bei Raumtemperatur.
Graphitrohr Anwendungen
- Wärmetauscher: Effiziente Wärmeübertragung in chemischen und industriellen Systemen.
- Elektronische Geräte: Wird für das Wärmemanagement in der Hochleistungselektronik verwendet.
- Komponenten für die Luft- und Raumfahrt: Hält extremen Temperaturen und Temperaturschwankungen stand.
- Ausrüstung für die chemische Verarbeitung: Beständig gegen Korrosion durch aggressive Säuren und Laugen.
- Autoteile: Geeignet für hohe Temperaturen und hohe Belastungen im Motor.
Materialeigenschaften von Graphit
Graphit-Materialsorten
Naturgraphit wird in drei Haupttypen eingeteilt: amorpher Graphit, Flockengraphit und Adergraphit (Klumpengraphit). Jeder Typ hat unterschiedliche Eigenschaften und eignet sich für verschiedene industrielle Anforderungen.
Graphit Typ | Einführung | Wichtige Eigenschaften |
---|---|---|
Amorpher Graphit | Mikrokristalliner Graphit aus metamorphosierten Kohleflözen; stumpfes Aussehen und weiche Textur. | - Kohlenstoffgehalt: 60-85% - Feine Partikelgröße - Gute Wärmeleitfähigkeit - Mäßige elektrische Leitfähigkeit - Gute Schmiereigenschaften |
Flockengraphit | Geschichteter Graphit, der sich in metamorphen Gesteinen bildet; glänzend mit metallischem Schimmer. | - Kohlenstoffgehalt: 85-99% - Ausgezeichnete Wärmeleitfähigkeit - Hohe elektrische Leitfähigkeit - Starke Schmierfähigkeit - Stabil in chemischer Umgebung |
Ader (Klumpen) Graphit | Hydrothermal geformter Graphit mit höchster Reinheit und Leitfähigkeit. | - Kohlenstoffgehalt: 90-99% - Außergewöhnliche Wärmeleitfähigkeit - Sehr hohe elektrische Leitfähigkeit - Hervorragende Oxidationsbeständigkeit - Ausgezeichnete chemische Stabilität |
Synthetischer Graphit wird durch die Hochtemperaturbehandlung von kohlenstoffhaltigen Materialien hergestellt. Im Vergleich zu Naturgraphit bietet er kontrolliertere Eigenschaften, wie höhere Reinheit, bessere Gleichmäßigkeit und spezifische Leistungsvorteile für verschiedene industrielle Anwendungen. Zu den gebräuchlichen Typen gehören Biographit, gesenkgeformter Graphit, extrudierter Graphit, isostatischer Graphit und vibrationsgeformter Graphit.
Graphit Typ | Einführung | Wichtige Eigenschaften |
---|---|---|
Biographit | Wird durch Karbonisierung aus biologischen Materialien gewonnen. | - Kohlenstoffgehalt: 80-95% - Mäßige thermische und elektrische Leitfähigkeit - Poröse Struktur, gut für die Filtration - Beständig gegen Säuren und Basen |
Gesenkgegossener Graphit | Kompaktes Kohlenstoffpulver, geformt und graphitiert. | - Hohe Dichte und Festigkeit - Ausgezeichnete elektrische Leitfähigkeit - Chemisch inert - Hochgradig bearbeitbar |
Stranggepresster Graphit | Extrudiertes Kohlenstoffmaterial mit gerichteter Kornstruktur. | - Hoher Kohlenstoffgehalt >99% - Gute Leitfähigkeit - Anisotrope Eigenschaften - Mäßige Verschleißfestigkeit |
Isostatischer Graphit | Hergestellt durch isostatisches Pressen für einheitliche Eigenschaften. | - Ultrahochgradige Reinheit >99,99% - Isotrope Festigkeit - Ausgezeichnete thermische und elektrische Leitfähigkeit - Feinkörnige Struktur |
Vibrationsgeformter Graphit | Durch Vibrationsverdichtung geformter Graphit. | - Hoher Kohlenstoffgehalt >99% - Gute elektrische Leitfähigkeit - Langlebig mit hoher Druckfestigkeit - Bearbeitbar zu großen Teilen |
Spezialgraphit umfasst eine breite Palette von technischen Graphitmaterialien, die den hohen Anforderungen verschiedener Branchen gerecht werden. Jede Sorte wird in einzigartiger Weise verarbeitet oder modifiziert, um bestimmte Eigenschaften wie Wärmeleitfähigkeit, chemische Beständigkeit, strukturelle Festigkeit oder elektrische Leistung zu verbessern. Diese Materialien sind in Bereichen wie Energiespeicherung, Funkenerosion, Kerntechnik und Hochtemperaturverarbeitung von entscheidender Bedeutung. Ob durch Reinigung, Imprägnierung oder fortschrittliche Abscheidungstechniken, Spezialgraphite bieten gezielte Lösungen, wo gewöhnlicher Graphit nicht ausreicht.
Klasse | Wichtige Eigenschaften | Anwendungen |
---|---|---|
Batterie-Graphit | Hohe Reinheit (>99,95%), elektrochemische Stabilität, geringe Oberfläche, kugelförmige/flockige Partikel (5-20 μm) | Lithium-Ionen-Batterien, Energiespeichersysteme |
EDM-Graphit | Feines Korn (2-10 μm), hohe elektrische Leitfähigkeit, geringes Gewicht, Erosionsbeständigkeit, Wärmeleitfähigkeit | Funkenerosion (EDM) |
Flexibler Graphit | Hochflexibel, Wärmeleitfähigkeit (150-300 W/m-K), chemische Beständigkeit, Komprimierbarkeit, großer Temperaturbereich | Dichtungen, EMI-Abschirmung, Wärmemanagement |
Metallimprägnierter Graphit | Verbesserte thermische und elektrische Leitfähigkeit, Korrosionsbeständigkeit, mechanische Festigkeit, Verschleißfestigkeit | Lager, Dichtungen, chemische Verarbeitungsanlagen |
Graphit in Nuklearqualität | Hohe Dichte (>1,70 g/cm³), geringe Neutronenabsorption, thermische Stabilität, Strahlungsbeständigkeit, geringe Porosität | Kernreaktoren (Moderatoren, Reflektoren, Abschirmungen) |
Pyrolytischer Graphit | Hochgradig anisotrop, Leitfähigkeit in der Ebene, EMI-Abschirmung, chemische Beständigkeit, hohe Dichte (≈2,20 g/cm³) | Elektronik, Luft- und Raumfahrt, medizinische Geräte |
Feuerfester Graphit | Abrieb- und Temperaturwechselbeständigkeit, chemische Stabilität, Oxidationsbeständigkeit (beschichtet), geringe Wärmeausdehnung | Metallurgie, Keramikindustrie, chemische Reaktoren |
Harz-imprägnierter Graphit | Chemische Beständigkeit, verbesserte Festigkeit, geringere Porosität, Oxidationsbeständigkeit, geringere Leitfähigkeit | Pumpen, Gleitringdichtungen, chemische Förderanlagen |
Graphitverbundwerkstoffe kombinieren Graphit mit anderen Materialien wie Kohlenstoff, Fasern, Harzen oder Metallen, um deren Eigenschaften für bestimmte Hochleistungsanwendungen zu verbessern und auszugleichen. Bei diesen Verbundwerkstoffen bleiben die natürlichen Vorteile von Graphit wie Schmierfähigkeit, Leitfähigkeit und thermische Stabilität erhalten, während gleichzeitig die Festigkeit, Verschleißfestigkeit oder strukturelle Steifigkeit verbessert wird. Graphitverbundwerkstoffe werden in vielen Branchen eingesetzt, z. B. in der Luft- und Raumfahrt, der Metallurgie, der Elektronik und der chemischen Verarbeitung, und bieten hervorragende Lösungen für anspruchsvolle Umgebungen, in denen herkömmliche Materialien versagen können.
Eigentum | Kohlenstoff-Graphit | Graphit-Faser-Verbundwerkstoffe |
---|---|---|
Abnutzungswiderstand | Hoch, wirksam bei Anwendungen mit hoher Reibung | Gut, mit hoher Ermüdungs- und Stoßfestigkeit |
Stärke | Hohe Festigkeit und Steifigkeit | Außergewöhnliche Zugfestigkeit und hohe Steifigkeit |
Dichte | Geringes Gewicht durch niedrige Dichte | Sehr geringe Dichte für kritische Gewichtsreduzierung |
Thermische Stabilität | Arbeitet bei bis zu 3000°C in inerten Umgebungen | Behält seine Integrität bei hohen Temperaturen bei |
Wärmeleitfähigkeit | Mäßig bis hoch, je nach Inhaltsstoffen | Hoch, ermöglicht hervorragende Wärmeableitung |
Elektrische Leitfähigkeit | Gut, geeignet für EDM und Elektroden | Mäßig, nützlich für die EMI-Abschirmung |
Chemische Beständigkeit | Beständig gegen Säuren, Laugen und organische Lösungsmittel | Inert gegenüber den meisten Chemikalien, Feuchtigkeit und UV-Strahlung |
Reibungseigenschaften | Selbstschmierend, geringe Reibung auch bei extremen Temperaturen | Hohe Ermüdungsfestigkeit, geringe Wärmeausdehnung |
Oxidationsbeständigkeit | Begrenzt, kann aber durch Beschichtungen verbessert werden | Stabil in nicht oxidierenden Umgebungen |
Anwendungen | Metallurgie, EDM-Elektroden, Hochtemperaturteile | Luft- und Raumfahrt, strukturelle Verbundwerkstoffe, Elektronik |
Graphit-Keramik-Bearbeitung
Graphit ist ein synthetisches keramisches Material aus kristallinem Kohlenstoff, das eine außergewöhnliche Wärmeleitfähigkeit, hohe Wärmebeständigkeit, geringe Porosität und Stabilität bei extremen Temperaturen aufweist. Diese Eigenschaften machen es für Hochtemperaturanwendungen wie Guss, Metallurgie und Elektronik unverzichtbar. Die Bearbeitung von Graphit erfordert jedoch aufgrund seiner einzigartigen Eigenschaften spezielle Techniken: Er ist spröde und kann bei der Bearbeitung feine Partikel und Risse erzeugen. Graphit verformt sich nicht wie Metalle unter den Schnittkräften und erfordert eine präzise Bearbeitung, um die Maßhaltigkeit und die Unversehrtheit der Oberfläche zu gewährleisten. Zu den gängigen Bearbeitungsmethoden gehören:
- CNC-Bearbeitung: Computergesteuertes Bohren, Fräsen und Schleifen werden häufig für die Herstellung komplexer Graphitteile mit engen Toleranzen eingesetzt.
- Diamant-Schleifen: Diamantwerkzeuge werden eingesetzt, um glatte Oberflächen und präzise Formen zu erzielen und gleichzeitig die Partikelbildung zu minimieren.
- Sägen: Spezialsägen werden verwendet, um Graphitblöcke in bestimmte Größen oder grobe Formen zu schneiden, bevor sie feiner bearbeitet werden.
- Bohren: Das Bohren von Graphit nach Maß erfordert eine sorgfältige Kontrolle von Geschwindigkeit und Vorschub, um Risse zu vermeiden und saubere Löcher zu erhalten.
- Fräsen: Das Hochgeschwindigkeitsfräsen mit Hartmetall- oder diamantbeschichteten Werkzeugen wird zur Herstellung detaillierter Profile und Kavitäten eingesetzt.
- Oberflächenveredelung: Nach der ersten Formgebung wird durch zusätzliches Schleifen oder Polieren die für technische Anwendungen erforderliche Oberflächengüte erreicht.
Graphit-Keramik-Verpackungen
Graphitkeramikprodukte werden in der Regel in vakuumversiegelten Beuteln verpackt, um Feuchtigkeit oder Verunreinigungen zu vermeiden, und mit Schaumstoff umwickelt, um Erschütterungen und Stöße während des Transports zu dämpfen und die Qualität der Produkte im Originalzustand zu gewährleisten.
Herunterladen
Angebot einholen
Wir werden das prüfen und uns innerhalb von 24 Stunden bei Ihnen melden.