Strukturelle Komponenten aus Siliziumnitrid

Strukturelle Komponenten aus Siliziumnitrid

Strukturelle Komponenten aus Siliziumnitrid

Reinheit: ≥99%

  • Kundenspezifische Größen und Standardgrößen auf Lager
  • Schnelle Vorlaufzeit
  • Konkurrenzfähiger Preis
5 星级
5 星级
5 星级
5 星级
5 星级

Strukturelle Komponenten aus Siliziumnitrid sind keramische Präzisionsteile aus Si₃N₄, die mit komplexen Formen und mehreren Löchern für die mechanische Integration oder den Durchgang von Flüssigkeiten und Gasen versehen sind. Diese Bauteile bieten eine außergewöhnliche thermische Stabilität, hohe mechanische Festigkeit und präzise Maßgenauigkeit, wodurch sie sich ideal für Hochtemperaturanwendungen, Halbleitergeräte und Fluidsteuerungssysteme eignen. Die Konstruktion gewährleistet eine hervorragende Kompatibilität mit anderen Teilen und sorgt für eine zuverlässige Systemleistung. Wir können hochwertige Siliziumnitrid-Strukturbauteile mit verschiedenen Spezifikationen und zu wettbewerbsfähigen Preisen liefern und kundenspezifische Lösungen für spezifische Anforderungen anbieten.

Oder senden Sie uns eine E-Mail an sales@heegermaterials.com.

Datenblatt für Siliziumnitrid-Strukturkomponenten

Referenz-Code:HM2569
Reinheit:≥99%
Farbe:Schwarz
Chemische Formel:Si3N4
Werkstoffklassen:HMSN1000, HMSN2000, HMSN3000, HMSN4000
Die Dichte:3,20 g/cm3
Dimension:angepasst

Siliziumnitrid-Strukturkomponenten Beschreibung

Siliziumnitrid-Strukturbauteile sind präzisionsgefertigte Keramikteile aus hochwertigem Si₃N₄-Material, das für seine außergewöhnliche Haltbarkeit und Hitzebeständigkeit bekannt ist. Diese Komponenten sind mit präzisen geometrischen Formen und strategisch platzierten Löchern versehen, die eine effektive Integration in komplexe Systeme ermöglichen. Ihre Fähigkeit, Temperaturen von bis zu 1200 °C standzuhalten, macht sie ideal für Hochleistungsanwendungen in Branchen wie der Luft- und Raumfahrt, der Halbleiterherstellung und der Automobilindustrie. Die hohe Festigkeit, die Verschleißfestigkeit und die Beständigkeit gegen chemische Korrosion des Materials gewährleisten eine lange Lebensdauer in anspruchsvollen Umgebungen. Diese Strukturbauteile sind perfekt für Anwendungen, die zuverlässige, hitzebeständige und mechanisch robuste Lösungen erfordern.

Siliziumnitrid-Strukturkomponenten Merkmale

  • Hohe Festigkeit und Langlebigkeit: Strukturbauteile aus Siliziumnitrid bieten eine außergewöhnliche mechanische Festigkeit und eignen sich daher für Anwendungen, die eine hohe Belastbarkeit und Schlagfestigkeit erfordern.
  • Ausgezeichnete thermische Stabilität: Strukturbauteile aus Siliziumnitrid behalten ihre Eigenschaften in Hochtemperaturumgebungen bei und halten Temperaturen von bis zu 1200 °C stand, was sie ideal für den Einsatz in Öfen und in der Luft- und Raumfahrt macht.
  • Verschleiß- und Abnutzungsbeständigkeit: Siliziumnitrid-Strukturbauteile sind für ihre hohe Härte bekannt und bieten eine hervorragende Verschleiß- und Abriebfestigkeit, wodurch sich die Lebensdauer der Bauteile auch in rauen Umgebungen mit hoher Reibung verlängert.
  • Chemische Beständigkeit: Die äußerst korrosionsbeständigen Siliziumnitrid-Strukturkomponenten können einer Vielzahl von Chemikalien, einschließlich Säuren, Laugen und anderen korrosiven Substanzen, standhalten und gewährleisten so eine langfristige Zuverlässigkeit.
  • Geringe thermische Ausdehnung: Siliziumnitrid hat einen niedrigen thermischen Ausdehnungskoeffizienten, der dazu beiträgt, das Risiko von Temperaturschocks zu minimieren, was es für Anwendungen mit schnellen Temperaturschwankungen geeignet macht.

Siliziumnitrid-Strukturkomponenten Anwendungen

  • Luft- und Raumfahrtindustrie: Wird in Bauteilen verwendet, die extremer Hitze und Druck ausgesetzt sind, z. B. in Triebwerksgehäusen und thermischen Abschirmungssystemen, um die Leistung unter schwierigen Flugbedingungen zu gewährleisten.
  • Fahrzeugtechnik: Wird in Motorlagern, Abgassystemen und AGR-Komponenten eingesetzt, um den thermischen Wirkungsgrad zu verbessern und die Emissionen in Hochleistungsfahrzeugen zu reduzieren.
  • Elektronik und Halbleiter: Sie dienen als isolierende Halterungen, Schaltungsträger und Wärmeableitungselemente, wenn hohe Präzision und Stabilität entscheidend sind.
  • Industrielle Maschinen: Wird in Geräten eingesetzt, die starkem Verschleiß und chemischen Einflüssen ausgesetzt sind, z. B. in Pumpen, Lagern und Prozessanlagen, und erhöht die Betriebssicherheit.
  • Energiesektor: Wird in Hochtemperatur-Brennstoffzellen und Stromerzeugungssystemen verwendet, wo langfristige thermische und mechanische Stabilität erforderlich ist.

Materialeigenschaften von Siliziumnitrid

EigentumEinheitHMSN1000HMSN2000HMSN3000HMSN4000
Dichteg/cm33.18-3.403.18-3.403.18-3.263.23
DruckfestigkeitMPa3000300030003000
Biegefestigkeit @ 25°CMPa730970760-830850
Weibull-Modul m-18201218
Bruchzähigkeit KIcMPa m1/276.26.2-6.58.5
ElastizitätsmodulGPa300300300-310320
Querkontraktionszahl-0.260.260.260.28
HärteGPa151515.3-15.616

EigentumEinheitHMSN1000HMSN2000HMSN3000HMSN4000
Wärmeleitfähigkeit @ 20°CW/mK25242528
Temperaturschock Parameter R1K558748590-620700
Temperaturschock Parameter R2W/m14181519
CTE1 25°C ➞ 250°C10-6/K1.91.91.91.9
CTE1 25°C ➞ 1000°C10-6/K3.23.23.23.2
Maximale Temperatur (inert) 2°C1400140014001400
Maximale Temperatur (oxidierend) 2°C1200120012001200

EigentumEinheitHMSN1000HMSN2000HMSN3000HMSN4000
Volumenwiderstand @ 25°Cohm-cm1014101410141012
Durchschlagfestigkeit DC @ 25°CkV/mm19191919
Dielektrizitätskonstante1 MHz8887

Siliziumnitrid-Sorten

HMSN1000 wird durch ein Gasüberdrucksinterverfahren hergestellt, das weithin für die Herstellung von hochfesten Siliziumnitridteilen mit komplizierten Formen anerkannt ist. Das Verfahren beginnt mit einer Siliziumnitrid-Pulvermischung, die Sinteradditive - wie Yttriumoxid, Magnesiumoxid oder Aluminiumoxid - enthält, um während des Sinterns eine flüssige Phase zu erzeugen, sowie Bindemittel zur Verbesserung der strukturellen Integrität der vorgesinterten Form. Nach der Formgebung des Pulvers in die gewünschte Geometrie und der erforderlichen Grünbearbeitung werden die Bauteile in einem Stickstoffofen verdichtet. Diese Umgebung gewährleistet eine ordnungsgemäße Verfestigung und minimiert gleichzeitig den Materialverlust aufgrund von Verdampfung oder Zersetzung von Silizium, Stickstoff und den Zusatzstoffen.

Häufige Verwendungszwecke

  • Komponenten für Luft- und Raumfahrtsysteme
  • Wälz- und Gleitelemente in Lagereinheiten
  • Hochbelastbare Teile für Verbrennungsmotoren
  • Werkzeuge und Zubehör für Guss und Metallverarbeitung
  • Strukturelle Teile in mechanischen Baugruppen
  • Biokompatible Elemente für medizinische Geräte

HMSN2000 wird durch ein Heißpressverfahren hergestellt, bei dem Siliciumnitridpulver unter hohem Druck und erhöhter Temperatur gleichzeitig verdichtet wird. Für dieses Verfahren sind spezielle Geräte erforderlich, darunter Präzisionswerkzeuge und einachsige Pressen. Das Ergebnis ist eine dichte Keramik mit hervorragender Festigkeit und Haltbarkeit. Das Verfahren eignet sich jedoch aufgrund der begrenzten Möglichkeiten der Anlagen am besten für die Herstellung von Grundgeometrien. Da die Bauteile nicht im vorgesinterten (grünen) Zustand bearbeitet werden können, muss die gesamte Nachbearbeitung durch Diamantschleifen erfolgen, was sowohl zeitaufwändig als auch kostspielig ist. Daher ist dieses Verfahren in der Regel der Kleinserienfertigung einfacher Teile vorbehalten, bei denen eine hohe Materialgüte erforderlich ist.

Häufige Verwendungszwecke

  • Strukturelle Teile in Luft- und Raumfahrzeugsystemen
  • Ausrüstungs- und Rohrleitungskomponenten in der chemischen Verarbeitungsindustrie
  • Reibungsarme Elemente für Motoren
  • Werkzeuge und Verschleißteile für den Metallguss
  • Tragende Teile und Präzisionsteile in Industriemaschinen
  • Spezialisierte Stücke für medizinische und zahnmedizinische Instrumente

HMSN3000 nutzt das Verfahren des Heiß-Isostatischen-Pressens (HIP), bei dem Siliziumnitridpulver unter hohem Druck und hoher Temperatur verdichtet wird. Das Material wird in eine Kammer gelegt, die mit Inertgas unter Druck gesetzt wird, wodurch das Bauteil von allen Seiten einem gleichmäßigen Druck von bis zu 2000 bar ausgesetzt wird, während es gleichzeitig erhitzt wird. Dieses Verfahren trägt dazu bei, während des Sintervorgangs verbleibende Porosität oder Defekte zu beseitigen, was zu einem Material mit einer Dichte nahe dem theoretischen Maximum führt. Obwohl das HIP-Verfahren die mechanischen Eigenschaften, die Haltbarkeit und die allgemeine Zuverlässigkeit des Materials erheblich verbessert, beschränken die hohen Kosten und die Komplexität des Verfahrens seinen Einsatz auf hochspezialisierte Anwendungen.

Häufige Verwendungszwecke

  • Komponenten für die Luft- und Raumfahrt und die Verteidigungsindustrie
  • Präzisionslageranwendungen, insbesondere in Hochleistungsumgebungen
  • Ausrüstungen und Komponenten in chemischen Verarbeitungsbetrieben und Industrieanlagen
  • Motorenteile, die extremer Abnutzung und thermischer Belastung ausgesetzt sind
  • Gießereiwerkzeuge und verschleißfeste Komponenten
  • Hochleistungsteile für den Maschinen- und Anlagenbau
  • Medizinische Komponenten, die eine hohe Festigkeit und Biokompatibilität erfordern

HMSN4000 wird in einem extrudierten Gasüberdrucksinterverfahren hergestellt, bei dem Siliziumnitridpulver mit Sinteradditiven wie Yttriumoxid, Magnesiumoxid und/oder Aluminiumoxid vermischt wird, um das Sintern in der Flüssigphase zu erleichtern. Zusätzlich werden Bindemittel beigefügt, um die mechanischen Eigenschaften der grünen Keramikstruktur zu verbessern. Der Extrusionsprozess hilft, das Material in die gewünschte Form zu bringen, und die Teile werden dann in einer kontrollierten Umgebung unter Gasüberdruck gesintert. Dieses Verfahren gewährleistet eine gleichmäßige Dichte und eine hervorragende mechanische Leistung und ist daher ideal für Hochleistungsanwendungen.

Häufige Verwendungszwecke

  • Komponenten für die Luft- und Raumfahrtindustrie
  • Lager, die in Hochleistungsmaschinen verwendet werden
  • Ausrüstung für Chemieanlagen und industrielle Verarbeitung
  • Verschleissfeste Teile für Motoren
  • In Gießereien verwendete Komponenten
  • Teile für Maschinenbausysteme
  • Medizinische Komponenten für hochpräzise Instrumente

Siliziumnitrid-Keramik-Bearbeitung

Siliziumnitrid-Keramik-Bearbeitung

Siliciumnitrid kann in grüner, biskuitierter oder vollständig gesinterter Form bearbeitet werden, wobei jede Form unterschiedliche Bearbeitungseigenschaften aufweist. Im Grün- oder Biskuitzustand lässt es sich leichter in komplexe Formen bringen, aber das Material schrumpft während des Sinterns um 20%, was die Maßgenauigkeit beeinträchtigt. Für enge Toleranzen muss vollgesintertes Siliciumnitrid mit Diamantwerkzeugen bearbeitet werden, ein präzises, aber aufgrund der Härte und Zähigkeit des Materials kostspieliges Verfahren.

Bearbeitungsmethoden und Überlegungen:

  • Grün- oder Biscuit-Bearbeitung: Lässt sich leichter zu komplexen Formen verarbeiten, weist aber keine endgültige Maßgenauigkeit auf.
  • Sinter-Schrumpfung: Das Material schrumpft während des Sinterprozesses um 20%, was sich auf die Abmessungen nach dem Sintern auswirkt.
  • Enge Toleranzen: Für genaue Abmessungen muss nachgesintertes Material mit Diamantwerkzeugen bearbeitet werden.
  • Diamant-Schleifen: Bei dieser Technik werden diamantbeschichtete Werkzeuge oder Räder verwendet, um das Material abzuschleifen und die gewünschte Form zu erhalten.
  • Kosten und Zeit: Die Bearbeitung von völlig dichtem Siliciumnitrid ist aufgrund der Härte und Zähigkeit des Materials ein langsamer und teurer Prozess.

Siliziumnitrid-Keramik-Verpackungen

Siliziumnitrid-Keramikprodukte werden in der Regel in vakuumversiegelten Beuteln verpackt, um Feuchtigkeit oder Verunreinigungen zu vermeiden, und mit Schaumstoff umwickelt, um Erschütterungen und Stöße während des Transports zu dämpfen und die Qualität der Produkte in ihrem ursprünglichen Zustand zu gewährleisten.

Keramikprodukte Verpackung-HM

Angebot einholen

Wir werden das prüfen und uns innerhalb von 24 Stunden bei Ihnen melden.

Um Ihre Siliziumnitrid-Strukturkomponenten individuell zu gestalten, geben Sie bitte die folgenden Details an:

  • Abmessungen: Geben Sie den Durchmesser, die Länge, die Breite, die Höhe und andere Parameter an.
  • Formen: Geben Sie die Details zur Form des Teils an.
  • Material Klasse: Geben Sie die Werkstoffsorten an.
  • Reinheit des Materials
  • Toleranzen: Geben Sie die Toleranzen an, die Sie akzeptieren können.
  • Oberfläche: poliert, rau, etc.
  • Menge der von Ihnen benötigten Produkte
  • Alternativ können Sie auch eine Zeichnung mit Ihren Spezifikationen.

Sobald wir diese Angaben haben, können wir Ihnen innerhalb von 24 Stunden ein Angebot unterbreiten.

Wir haben eine Vielzahl von Siliziumnitrid-Keramikprodukten auf Lager, für die im Allgemeinen keine Mindestbestellmenge erforderlich ist. Für kundenspezifische Aufträge setzen wir jedoch in der Regel einen Mindestbestellwert von $200 fest. Die Vorlaufzeit für Lagerartikel beträgt in der Regel 1-2 Wochen, während Sonderanfertigungen in der Regel 3-4 Wochen dauern, je nach den Besonderheiten des Auftrags.

Ja, sie bieten eine hervorragende elektrische Isolierung und eignen sich daher für elektronische und Hochspannungsanwendungen.

Ja, wir können komplexe Geometrien mit präzisen Löchern oder Kanälen nach Kundenspezifikation herstellen.

Advanced Ceramic Hub, gegründet 2016 in Colorado, USA, ist ein spezialisierter Anbieter und Hersteller von Siliziumnitrid-Keramik (Si3N4). Dank unserer umfassenden Erfahrung im Bereich der Lieferung und des Exports bieten wir wettbewerbsfähige Preise und maßgeschneiderte Lösungen für spezifische Anforderungen, die hervorragende Qualität und Kundenzufriedenheit gewährleisten. Als professioneller Anbieter von keramikMit unserem Angebot an hochschmelzenden Metallen, Speziallegierungen, kugelförmigen Pulvern und verschiedenen hochentwickelten Werkstoffen bedienen wir den Bedarf von Wissenschaft und Industrie in den Bereichen Forschung, Entwicklung und industrielle Großproduktion.

Anfrage-Formular

Ähnliche Beiträge