Bloque de grafito
Bloque de grafito
Pureza: ≥99%
Bloque de grafito is a solid carbon material known for its exceptional thermal resistance and electrical conductivity. Made from natural or synthetic graphite, these blocks are engineered under high temperatures and pressures to achieve outstanding strength and durability. They are widely used in high-temperature environments such as metallurgical furnaces, chemical reactors, and heat exchangers. With high density, good machinability, and the ability to be produced in various shapes like rectangular, circular, or trapezoidal, graphite blocks support custom designs for specific industrial needs. We offer molded, high-purity, and isostatic graphite blocks, with maximum sizes reaching up to 3050 mm in length, 1000 mm in width, and 600 mm in height, meeting demanding applications across metallurgy, energy, and chemical industries.
O envíenos un correo electrónico a sales@heegermaterials.com.Graphite Block Data Sheet
Código de referencia | HM2594 |
Pureza | ≥99.9% |
Color | Gris oscuro a negro |
Fórmula química | C |
Grados de material | Grafito natural, grafito sintético, grafito especial, grafito compuesto |
Densidad | 1,7-1,92 g/cm³ |
Temperatura máxima de funcionamiento | Hasta 3000°C (en atmósfera inerte) |
Conductividad térmica | 100-200 W/m-K |
Graphite Block Description
Bloque de grafito is crafted from high-quality carbon materials and offers remarkable performance in extreme temperatures and harsh environments. Known for its excellent thermal stability, high electrical conductivity, and low thermal expansion, graphite block is commonly used in metallurgy, chemical processing, and energy industries. It can be precisely machined into different shapes and sizes, supporting a wide range of custom applications like furnace linings, casting molds, and heat exchangers. Available in molded, high-purity, and isostatic grades, graphite blocks provide reliable solutions where strength, precision, and resistance to thermal shock are essential.
Graphite Block Specifications
Artículos | Unidad | Valor | |
Granulometría | mm | 0.045-4 | |
Densidad aparente | g/cm3 | 1.65-1.95 | |
Resistividad | μΩ-m | 8.0-11.0 | |
Resistencia a la flexión | Mpa | 18-55 | |
Resistencia a la compresión | Mpa | 36-100 | |
The Coefficient of Thermal Expansion (CTE) | ×10-6/ ℃ | 2.9-3.0 | |
Fresno | % | 0.1-0.3 | |
Square | Longitud | mm | ≤3050 |
Anchura | mm | ≤1000 | |
Altura | mm | ≤600 | |
Products can be customized according to order requirements or specific drawings. |
Graphite Block Features
- Exceptional High-Temperature Resistance: Graphite block can withstand extremely high temperatures, with a melting point around 3850℃ and boiling point near 4250℃, maintaining stability even under intense heat conditions.
- Outstanding Thermal Shock Resistance: With a low thermal expansion coefficient, graphite blocks handle rapid temperature changes without cracking, ensuring durability in extreme environments.
- Superior Thermal and Electrical Conductivity: Graphite blocks deliver excellent heat and electrical transfer, outperforming stainless steel by four times in conductivity and far exceeding most non-metallic materials.
- Excellent Lubricity: Featuring a very low friction coefficient, graphite blocks provide smooth surface performance similar to molybdenum disulfide, enhancing their wear resistance.
- Gran estabilidad química: At room temperature, graphite blocks resist corrosion from acids, alkalis, and organic solvents, maintaining structural integrity over time.
Graphite Block Applications
- Steelmaking Electrodes: Graphite blocks are machined into electrodes for electric arc furnaces (EAF), conducting electricity to melt scrap metal into molten steel with high efficiency.
- Furnace Insulation Material: Used as thermal insulation in metallurgical furnaces, graphite furnaces, and silicon carbide furnaces, helping control temperature and minimize heat loss.
- Heating Elements: Serve as heating sources in high-temperature industrial furnaces, maintaining stable heat even above 2000°C for processes like material synthesis and treatment.
- EDM Electrodes: Machined into electrodes for electrical discharge machining (EDM), enabling high-precision shaping of hard metals with excellent durability and wear resistance.
- Nuclear Reactor Moderator: Acts as a neutron moderator in nuclear reactors, slowing down neutrons to ensure a stable and controlled fission reaction for safe energy generation.
Propiedades del grafito
Grados del material de grafito
El grafito natural se clasifica en tres tipos principales: grafito amorfo, grafito en escamas y grafito en vetas (terrones). Cada tipo tiene características distintas y se adapta a diferentes necesidades industriales.
Tipo de grafito | Introducción | Propiedades clave |
---|---|---|
Grafito amorfo | Grafito microcristalino procedente de filones de carbón metamorfoseados; aspecto mate y textura blanda. | - Contenido de carbono: 60-85% - Granulometría fina - Buena conductividad térmica - Conductividad eléctrica moderada - Buenas propiedades lubricantes |
Grafito en escamas | Grafito estratificado formado en rocas metamórficas; brillante con lustre metálico. | - Contenido de carbono: 85-99% - Excelente conductividad térmica - Alta conductividad eléctrica - Fuerte lubricidad - Estable en entornos químicos |
Veta (Terrón) Grafito | Grafito formado hidrotermalmente con la máxima pureza y conductividad. | - Contenido de carbono: 90-99% - Conductividad térmica excepcional - Muy alta conductividad eléctrica - Resistencia superior a la oxidación - Excelente estabilidad química |
El grafito sintético se produce mediante el tratamiento a alta temperatura de materiales carbonosos. Ofrece propiedades más controladas que el grafito natural, como mayor pureza, mejor uniformidad y ventajas de rendimiento específicas para diferentes aplicaciones industriales. Los tipos más comunes son el biografito, el grafito moldeado a presión, el grafito extruido, el grafito isostático y el grafito moldeado por vibración.
Tipo de grafito | Introducción | Propiedades clave |
---|---|---|
Biografito | Derivado de materiales biológicos mediante carbonización. | - Contenido de carbono: 80-95% - Conductividad térmica y eléctrica moderada - Estructura porosa, buena para la filtración - Resistente a ácidos y bases |
Grafito moldeado a presión | Polvos de carbono compactados, moldeados y grafitizados. | - Alta densidad y resistencia - Excelente conductividad eléctrica - Químicamente inerte - Altamente mecanizable |
Grafito extruido | Material de carbono extruido con estructura de grano direccional. | - Alto contenido en carbono >99% - Buena conductividad - Propiedades anisotrópicas - Resistencia moderada al desgaste |
Grafito isostático | Producido por prensado isostático para propiedades uniformes. | - Pureza ultra alta >99,99% - Resistencia isotrópica - Excelente conductividad térmica y eléctrica - Estructura de grano fino |
Grafito moldeado por vibración | Grafito formado por compactación por vibración. | - Alto contenido en carbono >99% - Buena conductividad eléctrica - Duradero con alta resistencia a la compresión - Mecanizable en piezas grandes |
El grafito especial abarca una amplia gama de materiales de grafito diseñados para satisfacer los exigentes requisitos de diversas industrias. Cada grado se procesa o modifica de forma única para mejorar propiedades específicas como la conductividad térmica, la resistencia química, la resistencia estructural o el rendimiento eléctrico. Estos materiales son fundamentales en campos como el almacenamiento de energía, el mecanizado por descarga eléctrica, la tecnología nuclear y el procesamiento a altas temperaturas. Ya sea mediante purificación, impregnación o técnicas avanzadas de deposición, los grafitos especiales ofrecen soluciones específicas para los casos en los que el grafito ordinario no sería suficiente.
Grado | Propiedades clave | Aplicaciones |
---|---|---|
Grafito de grado batería | Alta pureza (>99,95%), estabilidad electroquímica, baja área superficial, partículas esféricas/en copos (5-20 μm). | Baterías de iones de litio, sistemas de almacenamiento de energía |
EDM Grafito | Grano fino (2-10 μm), alta conductividad eléctrica, ligereza, resistencia a la erosión, conductividad térmica. | Mecanizado por descarga eléctrica (EDM) |
Grafito flexible | Alta flexibilidad, conductividad térmica (150-300 W/m-K), resistencia química, compresibilidad, amplio rango de temperaturas | Juntas, sellos, blindaje EMI, gestión térmica |
Grafito impregnado de metal | Mayor conductividad térmica y eléctrica, resistencia a la corrosión, resistencia mecánica, resistencia al desgaste | Rodamientos, juntas, equipos de procesamiento químico |
Grafito de calidad nuclear | Alta densidad (>1,70 g/cm³), baja absorción de neutrones, estabilidad térmica, resistencia a la radiación, baja porosidad | Reactores nucleares (moderadores, reflectores, blindaje) |
Grafito pirolítico | Altamente anisótropo, conductividad en el plano, blindaje EMI, resistencia química, alta densidad (≈2,20 g/cm³). | Electrónica, aeroespacial, dispositivos médicos |
Grafito refractario | Resistencia a la abrasión y al choque térmico, estabilidad química, resistencia a la oxidación (recubierto), baja dilatación térmica | Metalurgia, industria cerámica, reactores químicos |
Grafito impregnado de resina | Resistencia química, mayor resistencia, menor porosidad, resistencia a la oxidación, menor conductividad | Bombas, cierres mecánicos, equipos de manipulación de productos químicos |
Los compuestos de grafito combinan grafito con otros materiales como carbono, fibras, resinas o metales para mejorar y equilibrar sus propiedades en aplicaciones específicas de alto rendimiento. Estos compuestos conservan las ventajas naturales del grafito, como la lubricidad, la conductividad y la estabilidad térmica, a la vez que mejoran la solidez, la resistencia al desgaste o la rigidez estructural. Ampliamente utilizados en sectores como el aeroespacial, la metalurgia, la electrónica y el procesamiento químico, los compuestos de grafito ofrecen excelentes soluciones para entornos exigentes en los que los materiales tradicionales pueden fallar.
Propiedad | Carbono-grafito | Compuestos de fibra de grafito |
---|---|---|
Resistencia al desgaste | Alta, eficaz en aplicaciones de alta fricción | Buena resistencia a la fatiga y a los impactos |
Fuerza | Gran resistencia y rigidez | Excepcional resistencia a la tracción y gran rigidez |
Densidad | Ligero gracias a su baja densidad | Densidad muy baja para una reducción crítica del peso |
Estabilidad térmica | Funciona hasta 3000°C en entornos inertes | Mantiene la integridad a altas temperaturas |
Conductividad térmica | Moderada a alta, dependiendo de los componentes | Alta, lo que permite una excelente disipación del calor |
Conductividad eléctrica | Buena, adecuada para electroerosión y electrodos | Moderado, útil para apantallamiento EMI |
Resistencia química | Resistente a ácidos, álcalis y disolventes orgánicos | Inerte a la mayoría de los productos químicos, la humedad y los rayos UV |
Propiedades de fricción | Autolubricante, baja fricción incluso a temperaturas extremas | Alta resistencia a la fatiga, baja dilatación térmica |
Resistencia a la oxidación | Limitado, pero puede mejorarse con revestimientos | Estable en entornos no oxidantes |
Aplicaciones | Metalurgia, electrodos de electroerosión, piezas de alta temperatura | Aeroespacial, compuestos estructurales, electrónica |
Mecanizado de cerámica de grafito
Grafito es un material cerámico sintético fabricado a partir de carbono cristalino, que ofrece una excepcional conductividad térmica, alta resistencia térmica, baja porosidad y estabilidad a temperaturas extremas. Estas propiedades lo hacen esencial para aplicaciones de alto calor como la fundición, la metalurgia y la electrónica. Sin embargo, el mecanizado del grafito requiere técnicas especializadas debido a sus características únicas: es quebradizo y puede producir partículas finas y fisuras durante el procesamiento. El grafito no se deforma bajo fuerzas de corte como los metales, lo que exige una manipulación precisa para mantener la exactitud dimensional y la integridad de la superficie. Entre los métodos de mecanizado habituales se incluyen:
- Mecanizado CNC: El taladrado, fresado y rectificado controlados por ordenador se utilizan ampliamente para crear piezas de grafito complejas con tolerancias muy ajustadas.
- Rectificado con diamante: Las herramientas de diamante se aplican para conseguir acabados suaves y formas precisas minimizando la generación de partículas.
- Serrar: Las sierras especializadas se utilizan para cortar bloques de grafito en tamaños específicos o formas toscas antes de un mecanizado más fino.
- Perforación: El taladrado de grafito a medida requiere un cuidadoso control de la velocidad y el avance para evitar grietas y conseguir orificios limpios.
- Fresado: El fresado de alta velocidad con herramientas de carburo o recubiertas de diamante se utiliza para producir perfiles y cavidades detallados.
- Acabado superficial: Tras el conformado primario, un esmerilado o pulido adicional garantiza el acabado superficial requerido para las aplicaciones técnicas.
Envases cerámicos de grafito
Los productos cerámicos de grafito suelen envasarse en bolsas selladas al vacío para evitar la humedad o la contaminación y se envuelven con espuma para amortiguar las vibraciones y los impactos durante el transporte, lo que garantiza la calidad de los productos en su estado original.
Descargar
Solicitar presupuesto
Lo comprobaremos y le responderemos en 24 horas.