Bateau en graphite PECVD
Bateau en graphite PECVD
Pureté : ≥99%
Bateau en graphite PECVD is made from high-purity graphite with excellent thermal stability, electrical conductivity, and corrosion resistance. It is widely used to support silicon wafers during PECVD processes in solar cell and semiconductor production. By enabling stable plasma discharge between wafer carriers, it helps form high-quality anti-reflective and passivation layers, improving the overall conversion efficiency. Its strong structure and precise design ensure consistent performance under high temperatures and vacuum conditions. We can supply high-quality flexible graphite foil with various specifications and competitive prices, offering customized solutions to meet specific requirements.
Ou envoyez-nous un courriel à l'adresse suivante sales@heegermaterials.com.PECVD Graphite Boat Data Sheet
Code de référence | HM2599 |
La pureté | ≥99.9% |
Couleur | Gris foncé à noir |
Formule chimique | C |
Grades de matériaux | Graphite naturel, graphite synthétique, graphite spécialisé, graphite composite |
Densité | 1,65-1,95 g/cm³ |
Température de fonctionnement maximale | Jusqu'à 3000°C (en atmosphère inerte) |
Conductivité thermique | 100-200 W/m-K |
PECVD Graphite Boat Description
Bateau en graphite PECVD plays a vital role in plasma-enhanced chemical vapor deposition by securely holding silicon wafers during coating processes. Manufactured from ultra-pure graphite, it offers outstanding dimensional stability, low particle generation, and strong resistance to thermal shock. In PECVD chambers, the boat’s precise structure ensures uniform plasma exposure, allowing for the deposition of smooth, high-quality SiNx films. Its durability under extreme environments makes it essential for achieving high-efficiency solar cells and reliable semiconductor devices.
PECVD Graphite Boat Technical Parameter
Densité | Résistivité | Résistance à la compression | Résistance à la flexion | The Coefficient of Thermal Expansion (CTE) | Frêne | Taille des grains |
g/cm3 | μΩm | Mpa | Mpa | % | μm | |
1.80 | 10 | 55 | 30 | 4.5 | 0.1 | 45 |
1.85 | 9 | 62 | 35 | 5.5 | 0.1 | 45 |
PECVD Graphite Boat Specifications
Type | Spécifications | Note |
125mm*125mm 156mm*156mm Monocrystal/Polycrystal | 13 pieces | High-purity graphite Applied in PECVD equipment. |
15 pieces | ||
17 pieces | ||
19 pieces |
PECVD Graphite Boat Accessories
125 Type(125mm*125mm) | 125 Graphite Boat Side Sheet | |
125 Graphite Boat Center Sheet | ||
156 Type(156mm*156mm) | 156 Graphite Boat Side Sheet | |
156 Graphite Boat Center Sheet | ||
Graphite Screw | M6*215 | High-purity graphite |
M6*190 | ||
M6*275 | ||
M8*215 | ||
M8*190 | ||
M8*160 | ||
M8*245 | ||
Graphite Nut, Graphite Cap Nut | M6, M8 |
PECVD Graphite Boat Features
- Manufactured with high-precision machining equipment and strict process control to ensure consistent dimensions and a smooth, clean surface.
- Made from high-purity graphite with low impurity levels, providing excellent strength and long-term stability at high temperatures without deformation.
- Incorporates advanced production techniques that effectively eliminate “color spots” during continuous processing, improving product reliability.
PECVD Graphite Boat Applications
- Solar Cell Production: Serves as a critical carrier for silicon wafers during PECVD processes, helping form high-efficiency anti-reflective coatings that boost photovoltaic conversion rates.
- Semiconductor Manufacturing: Supports wafer processing during thin-film deposition, ensuring precise control over film quality and uniformity.
- Surface Passivation: Used to assist in the deposition of passivation layers that enhance the electrical performance and longevity of solar cells.
- Thin-Film Coating Systems: Plays a vital role in coating applications where stable, high-purity graphite support is essential for consistent film deposition.
Propriétés du graphite
Grades de matériaux en graphite
Le graphite naturel est classé en trois types principaux : le graphite amorphe, le graphite en paillettes et le graphite en veines (en morceaux). Chaque type présente des caractéristiques distinctes et répond à des besoins industriels différents.
Type de graphite | Introduction | Propriétés principales |
---|---|---|
Graphite amorphe | Graphite microcristallin provenant de veines de charbon métamorphosées ; aspect terne et texture molle. | - Teneur en carbone : 60-85% - Taille des particules fines - Bonne conductivité thermique - Conductivité électrique modérée - Bonnes propriétés lubrifiantes |
Graphite en écailles | Graphite stratifié formé dans les roches métamorphiques ; brillant avec un éclat métallique. | - Teneur en carbone : 85-99% - Excellente conductivité thermique - Conductivité électrique élevée - Fort pouvoir lubrifiant - Stable dans les environnements chimiques |
Veine (morceau) Graphite | Graphite formé par voie hydrothermale d'une pureté et d'une conductivité maximales. | - Teneur en carbone : 90-99% - Conductivité thermique exceptionnelle - Conductivité électrique très élevée - Résistance supérieure à l'oxydation - Excellente stabilité chimique |
Le graphite synthétique est produit par le traitement à haute température de matériaux carbonés. Il offre des propriétés mieux contrôlées que le graphite naturel, telles qu'une plus grande pureté, une meilleure uniformité et des avantages spécifiques en termes de performances pour différentes applications industrielles. Les types les plus courants sont la biographite, le graphite moulé sous pression, le graphite extrudé, le graphite isostatique et le graphite moulé par vibration.
Type de graphite | Introduction | Propriétés principales |
---|---|---|
Biographite | Dérivé de matériaux biologiques par carbonisation. | - Teneur en carbone : 80-95% - Conductivité thermique et électrique modérée - Structure poreuse, favorable à la filtration - Résistant aux acides et aux bases |
Graphite moulé sous pression | Poudres de carbone compactées, moulées et graphitisées. | - Densité et résistance élevées - Excellente conductivité électrique - Chimiquement inerte - Hautement usinable |
Graphite extrudé | Matériau en carbone extrudé avec une structure de grain directionnelle. | - Teneur élevée en carbone >99% - Bonne conductivité - Propriétés anisotropes - Résistance modérée à l'usure |
Graphite isostatique | Produit par pressage isostatique pour des propriétés uniformes. | - Ultra-haute pureté >99.99% - Résistance isotrope - Excellente conductivité thermique et électrique - Structure à grains fins |
Graphite moulé pour les vibrations | Graphite formé par compactage par vibration. | - Teneur élevée en carbone >99% - Bonne conductivité électrique - Durable avec une résistance élevée à la compression - Usinable en grandes pièces |
Les graphites spéciaux englobent une large gamme de graphites techniques conçus pour répondre aux exigences de diverses industries. Chaque qualité est traitée ou modifiée de manière unique afin d'améliorer des propriétés spécifiques telles que la conductivité thermique, la résistance chimique, la résistance structurelle ou les performances électriques. Ces matériaux sont essentiels dans des domaines tels que le stockage de l'énergie, l'usinage par décharge électrique, la technologie nucléaire et le traitement à haute température. Qu'ils soient obtenus par purification, imprégnation ou techniques de dépôt avancées, les graphites spéciaux offrent des solutions ciblées là où le graphite ordinaire ne suffirait pas.
Grade | Propriétés principales | Applications |
---|---|---|
Graphite de qualité batterie | Grande pureté (>99,95%), stabilité électrochimique, faible surface spécifique, particules sphériques/flocons (5-20 μm). | Batteries lithium-ion, systèmes de stockage d'énergie |
EDM Graphite | Grain fin (2-10 μm), conductivité électrique élevée, légèreté, résistance à l'érosion, conductivité thermique. | Usinage par décharge électrique (EDM) |
Graphite flexible | Très flexible, conductivité thermique (150-300 W/m-K), résistance chimique, compressibilité, large gamme de températures. | Joints, étanchéité, blindage EMI, gestion thermique |
Graphite imprégné de métal | Conductivité thermique et électrique améliorée, résistance à la corrosion, résistance mécanique, résistance à l'usure | Roulements, joints, équipements de traitement chimique |
Graphite de qualité nucléaire | Densité élevée (>1,70 g/cm³), faible absorption de neutrons, stabilité thermique, résistance aux radiations, faible porosité | Réacteurs nucléaires (modérateurs, réflecteurs, blindage) |
Graphite pyrolytique | Anisotropie élevée, conductivité dans le plan, blindage EMI, résistance chimique, densité élevée (≈2,20 g/cm³) | Électronique, aérospatiale, dispositifs médicaux |
Graphite réfractaire | Résistance à l'abrasion et aux chocs thermiques, stabilité chimique, résistance à l'oxydation (revêtement), faible dilatation thermique | Métallurgie, industrie céramique, réacteurs chimiques |
Graphite imprégné de résine | Résistance chimique, résistance améliorée, porosité réduite, résistance à l'oxydation, conductivité plus faible | Pompes, garnitures mécaniques, équipements de manutention des produits chimiques |
Les composites de graphite combinent le graphite avec d'autres matériaux tels que le carbone, les fibres, les résines ou les métaux afin d'améliorer et d'équilibrer leurs propriétés pour des applications spécifiques de haute performance. Ces composites conservent les avantages naturels du graphite tels que la lubrification, la conductivité et la stabilité thermique tout en améliorant la solidité, la résistance à l'usure ou la rigidité structurelle. Largement utilisés dans des secteurs tels que l'aérospatiale, la métallurgie, l'électronique et le traitement chimique, les composites de graphite offrent d'excellentes solutions pour les environnements exigeants où les matériaux traditionnels risquent d'échouer.
Propriété | Carbone-Graphite | Composites à base de fibres de graphite |
---|---|---|
Résistance à l'usure | Élevée, efficace dans les applications à frottement élevé | Bonne résistance à la fatigue et aux chocs |
La force | Résistance et rigidité élevées | Résistance exceptionnelle à la traction et grande rigidité |
Densité | Léger grâce à sa faible densité | Très faible densité pour une réduction critique du poids |
Stabilité thermique | Fonctionne jusqu'à 3000°C dans des environnements inertes | Maintien de l'intégrité à haute température |
Conductivité thermique | Modérée à élevée, en fonction des constituants | élevée, permettant une excellente dissipation de la chaleur |
Conductivité électrique | Bonne, adaptée à l'électroérosion et aux électrodes | Modéré, utile pour le blindage EMI |
Résistance chimique | Résistant aux acides, aux alcalis et aux solvants organiques | Inerte à la plupart des produits chimiques, à l'humidité et aux UV |
Propriétés de frottement | Autolubrifiant, faible frottement même à des températures extrêmes | Résistance élevée à la fatigue, faible dilatation thermique |
Résistance à l'oxydation | Limitée, mais peut être renforcée par des revêtements | Stable dans les environnements non oxydants |
Applications | Métallurgie, électrodes EDM, pièces à haute température | Aérospatiale, composites structurels, électronique |
Usinage de la céramique graphite
Graphite est un matériau céramique synthétique fabriqué à partir de carbone cristallin, offrant une conductivité thermique exceptionnelle, une résistance thermique élevée, une faible porosité et une stabilité à des températures extrêmes. Ces propriétés le rendent essentiel pour les applications à haute température telles que la fonderie, la métallurgie et l'électronique. Cependant, l'usinage du graphite nécessite des techniques spécialisées en raison de ses caractéristiques uniques : il est cassant et peut produire de fines particules et des fissures pendant le traitement. Le graphite ne se déforme pas sous l'effet des forces de coupe comme les métaux, ce qui exige une manipulation précise pour maintenir l'exactitude des dimensions et l'intégrité de la surface. Les méthodes d'usinage les plus courantes sont les suivantes
- Usinage CNC : Le perçage, le fraisage et le meulage commandés par ordinateur sont largement utilisés pour créer des pièces complexes en graphite avec des tolérances serrées.
- Meulage au diamant : Des outils diamantés sont utilisés pour obtenir des finitions lisses et des formes précises tout en minimisant la production de particules.
- Sciage : Des scies spécialisées sont utilisées pour découper les blocs de graphite en dimensions spécifiques ou en formes grossières avant de les usiner plus finement.
- Forage : Le perçage du graphite sur mesure nécessite un contrôle minutieux de la vitesse et de l'avance afin d'éviter les fissures et d'obtenir des trous propres.
- Fraisage : Le fraisage à grande vitesse avec des outils en carbure ou revêtus de diamant est utilisé pour produire des profils et des cavités détaillés.
- Finition de la surface : Après le façonnage primaire, une rectification ou un polissage supplémentaire permet d'obtenir l'état de surface requis pour les applications techniques.
Emballage en céramique graphite
Les produits en céramique graphite sont généralement emballés dans des sacs scellés sous vide pour éviter l'humidité ou la contamination et enveloppés de mousse pour amortir les vibrations et les chocs pendant le transport, ce qui garantit la qualité des produits dans leur état d'origine.
Télécharger
Obtenir un devis
Nous vérifierons et vous contacterons dans les 24 heures.