Graphite Ring

Graphite Ring

Graphite Ring

Purity: ≥99%

  • Custom sizes and standard sizes in stock
  • Quick Lead Time
  • Competitive Price
5 星级
5 星级
5 星级
5 星级
5 星级

Graphite Ring is made by compressing flexible graphite tape or braided packing into ring shapes, offering high-temperature resistance, self-lubrication, wear resistance, and corrosion resistance. It is widely used in glass molds, metallurgy, and high-temperature industries, as well as sealing applications involving acids, alkalis, and organic solvents. Graphite rings also perform reliably in high-pressure valves, plunger pumps, and mixers in industries like food processing, pharmaceuticals, papermaking, and chemical fiber production. Custom sizes and specifications are available to meet specific application needs. We can supply high-quality graphite ring with various specifications and competitive prices, offering customized solutions to meet specific requirements.

Or email us at sales@heegermaterials.com.

Graphite Ring Data Sheet

Reference Code:HM2593
Purity:≥99.9%
Color:Dark Gray to Black
Chemical Formula:C
Material Grades:Natural Graphite, Synthetic Graphite, Specialty Graphite, Composite Graphite
Density:1.7–1.92 g/cm³
Maximum Operating Temperature:Up to 3000°C (in inert atmosphere)
Thermal Conductivity:100–200 W/m·K

Graphite Ring Description

Graphite Ring is a high-performance sealing material crafted from flexible graphite, known for its exceptional resistance to high temperatures and corrosive environments. Its self-lubricating nature reduces wear, making it ideal for demanding applications in industries such as metallurgy, chemical processing, and high-pressure systems. These rings are widely used in pumps, valves, and reactors, where they ensure a tight seal in the presence of hot gases, steam, and aggressive chemicals. With their low thermal expansion, good conductivity, and ability to maintain integrity under extreme conditions, graphite rings provide reliable, long-lasting sealing solutions. They can be customized in size and shape to meet the specific needs of different industrial processes.

Graphite Ring Specifications

CategoryDetails
MaterialCarbon Content: 98% (Industrial Grade) ~ 99.85% (Nuclear Grade)
Density: Various densities up to 1.8 g/cm³
Operating ParameterIn almost all media and air environments: Resistant to -200°C ~ 550°C.
In a steam environment: Resistant to -200°C ~ 700°C
In inert gas environment: Resistant to -200°C ~ 2500°C
Resistant to fluids with a pH range of 0 – 14 (except strong oxidizers like nitric or sulfuric acid)
Pressure: 100 MPa
DimensionsOuter Diameter (OD): 2 – 1100 mm
It can also be fabricated into angled endless rings, cut straight or at a 45° diagonal, or split into two halves.
Special sizes can be customized according to order requirements or specific drawings.

Graphite Ring Features

  • High Temperature Resistance: Maintains structural integrity and functionality even at elevated temperatures, making it ideal for high-temperature applications.
  • Self-Lubricating: Reduces friction and wear, ensuring longer service life and reliability in rotating and moving parts.
  • Chemical Corrosion Resistance: Offers excellent resistance to a wide range of chemicals, including acids, alkalis, and organic solvents, making it suitable for aggressive environments.
  • Low Thermal Expansion: The material exhibits minimal thermal expansion, providing stable performance under varying temperature conditions.
  • Customizable Sizes: Graphite rings can be tailored to specific dimensions and applications, offering flexibility for a wide range of sealing needs across different industries.

Graphite Ring Applications

  • High-Temperature Sealing: Used in high-temperature environments like glass molding, metallurgy, and furnace applications for sealing and maintaining system integrity.
  • Chemical Processing: Ideal for sealing in industries dealing with acids, alkalis, and organic solvents, such as chemical manufacturing and pharmaceuticals, without contaminating the process.
  • Mechanical Sealing: Applied in pumps, compressors, and valves, especially in high-pressure or extreme operating conditions, to ensure reliable and efficient sealing.
  • Food and Pharmaceutical Industries: Provides leak-proof and contamination-free sealing in sensitive applications like food processing, pharmaceuticals, and cosmetics.
  • Energy and Power Generation: Utilized in energy plants and power generation systems, particularly for sealing equipment exposed to high temperatures, pressure, and corrosive substances.

Graphite Material Properties

PropertyMinimum Value (S.I.)Maximum Value (S.I.)Units (S.I.)Minimum Value (Imp.)Maximum Value (Imp.)Units (Imp.)
Atomic Volume (average)0.00520.0054m³/kmol317.323329.528in³/kmol
Density1.612.49Mg/m³100.509155.446lb/ft³
Bulk Modulus2.315.3GPa0.3335872.2190810⁶ psi
Compressive Strength31345MPa4.4961750.038ksi
Ductility0.001710.001890.001710.00189
Elastic Limit4.876MPa0.69618111.0229ksi
Endurance Limit15.4718.05MPa2.243732.61793ksi
Fracture Toughness0.42.4MPa·m¹/²0.3640192.18411ksi·in¹/²
Hardness295326MPa42.786247.2823ksi
Loss Coefficient0.0020.020.0020.02
Modulus of Rupture24110MPa3.4809115.9542ksi
Poisson’s Ratio0.170.230.170.23
Shear Modulus1.711.5GPa0.2465641.6679310⁶ psi
Tensile Strength4.876MPa0.69618111.0229ksi
Young’s Modulus4.127.6GPa0.5946544.0030410⁶ psi

PropertyMinimum Value (S.I.)Maximum Value (S.I.)Units (S.I.)Minimum Value (Imp.)Maximum Value (Imp.)Units (Imp.)
Latent Heat of Fusion16001810kJ/kg687.873778.156BTU/lb
Maximum Service Temperature28502960K4670.334868.33°F
Melting Point38003950K6380.336650.33°F
Minimum Service Temperature00K-459.67-459.67°F
Specific Heat697771J/kg·K0.5393790.596645BTU/lb·F
Thermal Conductivity8.7114W/m·K16.2867213.412BTU·ft/h·ft²·F
Thermal Expansion0.65.210⁻⁶/K1.089.3610⁻⁶/°F

PropertyMinimum Value (S.I.)Maximum Value (S.I.)Units (S.I.)Minimum Value (Imp.)Maximum Value (Imp.)Units (Imp.)
Resistivity7.941110⁻⁸ ohm·m7.941110⁻⁸ ohm·m

Graphite Material Grades

Natural graphite is classified into three primary types: amorphous graphite, flake graphite, and vein (lump) graphite. Each type has distinct characteristics and suits different industrial needs.

Graphite TypeIntroductionKey Properties
Amorphous GraphiteMicrocrystalline graphite from metamorphosed coal seams; dull appearance and soft texture.– Carbon content: 60–85%
– Fine particle size
– Good thermal conductivity
– Moderate electrical conductivity
– Good lubricating properties
Flake GraphiteLayered graphite formed in metamorphic rocks; shiny with metallic luster.– Carbon content: 85–99%
– Excellent thermal conductivity
– High electrical conductivity
– Strong lubricity
– Stable in chemical environments
Vein (Lump) GraphiteHydrothermally formed graphite with the highest purity and conductivity.– Carbon content: 90–99%
– Exceptional thermal conductivity
– Very high electrical conductivity
– Superior oxidation resistance
– Excellent chemical stability

Synthetic graphite is produced through the high-temperature treatment of carbonaceous materials. It offers more controlled properties compared to natural graphite, such as higher purity, better uniformity, and specific performance advantages for different industrial applications. Common types include biographite, die-molded graphite, extruded graphite, isostatic graphite, and vibration-molded graphite.

Graphite TypeIntroductionKey Properties
BiographiteDerived from biological materials through carbonization.– Carbon content: 80–95%
– Moderate thermal and electrical conductivity
– Porous structure, good for filtration
– Resistant to acids and bases
Die-Molded GraphiteCompacted carbon powders molded and graphitized.– High density and strength
– Excellent electrical conductivity
– Chemically inert
– Highly machinable
Extruded GraphiteExtruded carbon material with directional grain structure.– High carbon content >99%
– Good conductivity
– Anisotropic properties
– Moderate wear resistance
Isostatic GraphiteProduced by isostatic pressing for uniform properties.– Ultra-high purity >99.99%
– Isotropic strength
– Excellent thermal and electrical conductivity
– Fine grain structure
Vibration-Molded GraphiteGraphite formed by vibration compaction.– High carbon content >99%
– Good electrical conductivity
– Durable with high compressive strength
– Machinable into large parts

Specialty graphite encompasses a wide range of engineered graphite materials designed to meet the demanding requirements of various industries. Each grade is uniquely processed or modified to enhance specific properties such as thermal conductivity, chemical resistance, structural strength, or electrical performance. These materials are critical across fields like energy storage, electrical discharge machining, nuclear technology, and high-temperature processing. Whether achieved through purification, impregnation, or advanced deposition techniques, specialty graphite grades offer targeted solutions where ordinary graphite would not suffice.

GradeKey PropertiesApplications
Battery-Grade GraphiteHigh purity (>99.95%), electrochemical stability, low surface area, spherical/flake particles (5–20 μm)Lithium-ion batteries, energy storage systems
EDM GraphiteFine grain (2–10 μm), high electrical conductivity, lightweight, erosion resistance, thermal conductivityElectrical discharge machining (EDM)
Flexible GraphiteHighly flexible, thermal conductivity (150–300 W/m·K), chemical resistance, compressibility, wide temp rangeGaskets, seals, EMI shielding, thermal management
Metal-Impregnated GraphiteEnhanced thermal and electrical conductivity, corrosion resistance, mechanical strength, wear resistanceBearings, seals, chemical processing equipment
Nuclear-Grade GraphiteHigh density (>1.70 g/cm³), low neutron absorption, thermal stability, radiation resistance, low porosityNuclear reactors (moderators, reflectors, shielding)
Pyrolytic GraphiteHighly anisotropic, in-plane conductivity, EMI shielding, chemical resistance, high density (≈2.20 g/cm³)Electronics, aerospace, medical devices
Refractory GraphiteAbrasion and thermal shock resistance, chemical stability, oxidation resistance (coated), low thermal expansionMetallurgy, ceramic industry, chemical reactors
Resin-Impregnated GraphiteChemical resistance, improved strength, reduced porosity, oxidation resistance, lower conductivityPumps, mechanical seals, chemical handling equipment

Graphite composites combine graphite with other materials like carbon, fibers, resins, or metals to enhance and balance their properties for specific high-performance applications. These composites retain graphite’s natural benefits such as lubricity, conductivity, and thermal stability while improving strength, wear resistance, or structural rigidity. Widely used across industries like aerospace, metallurgy, electronics, and chemical processing, graphite composites offer excellent solutions for demanding environments where traditional materials may fail.

PropertyCarbon-GraphiteGraphite-Fiber Composites
Wear ResistanceHigh, effective in high-friction applicationsGood, with strong fatigue and impact resistance
StrengthHigh strength and rigidityExceptional tensile strength and high stiffness
DensityLightweight due to low densityVery low density for critical weight reduction
Thermal StabilityOperates up to 3000°C in inert environmentsMaintains integrity at high temperatures
Thermal ConductivityModerate to high, depending on constituentsHigh, enabling excellent heat dissipation
Electrical ConductivityGood, suitable for EDM and electrodesModerate, useful for EMI shielding
Chemical ResistanceResistant to acids, alkalis, and organic solventsInert to most chemicals, moisture, and UV
Friction PropertiesSelf-lubricating, low friction even at extreme temperaturesHigh fatigue resistance, low thermal expansion
Oxidation ResistanceLimited, but can be enhanced with coatingsStable in non-oxidizing environments
ApplicationsMetallurgy, EDM electrodes, high-temperature partsAerospace, structural composites, electronics

Graphite Ceramic Machining

Graphite Ceramic Machining

Graphite is a synthetic ceramic material made from crystalline carbon, offering exceptional thermal conductivity, high thermal resistance, low porosity, and stability at extreme temperatures. These properties make it essential for high-heat applications like casting, metallurgy, and electronics. However, machining graphite requires specialized techniques due to its unique characteristics: it is brittle and can produce fine particles and fissures during processing. Graphite does not deform under cutting forces like metals, demanding precise handling to maintain dimensional accuracy and surface integrity. Common machining methods include:

  • CNC Machining: Computer-controlled drilling, milling, and grinding are widely used for creating complex graphite parts with tight tolerances.
  • Diamond Grinding: Diamond tools are applied to achieve smooth finishes and precise shapes while minimizing particle generation.
  • Sawing: Specialized saws are used for cutting graphite blocks into specific sizes or rough shapes before finer machining.
  • Drilling: Custom graphite drilling requires careful speed and feed control to avoid cracks and achieve clean holes.
  • Milling: High-speed milling with carbide or diamond-coated tools is utilized to produce detailed profiles and cavities.
  • Surface Finishing: After primary shaping, additional grinding or polishing ensures the required surface finish for technical applications.

Graphite Ceramic Packaging

Graphite ceramic products are typically packaged in vacuum-sealed bags to prevent moisture or contamination and wrapped with foam to cushion vibrations and impacts during transport, ensuring the quality of products in their original condition.

ceramic products packing-HM

Get A Quote

We will check and get back to you in 24 hours.

To customize your Graphite Ring, please provide the following details:

  • Dimensions: Inner Diameter x Outer Diameter x Height (thickness)
  • Material Grade: Specify the material grades.
  • Purity of the material
  • Tolerances: Specify the tolerances you can apcept.
  • Surface Finish: polished, rough, etc.
  • Quantity of the rings you need
  • Alternatively, you can provide a drawing with your specifications.

Once we have these details, we can provide you with a quote within 24 hours.

We carry a wide variety of Graphite ceramic products in stock, and for these, there is generally no minimum order requirement. However, for custom orders, we typically set a minimum order value of $200. The lead time for stock items is usually 1-2 weeks, while custom orders usually take 3-4 weeks, depending on the specifics of the order.

Yes, graphite rings can be customized to meet specific requirements. They can be produced in various sizes and specifications to suit different industrial needs, including high-temperature sealing, chemical resistance, and pressure-sensitive applications. Customization ensures optimal performance in a wide range of operating conditions, such as those in pumps, valves, and compressors.

Graphite rings offer several benefits, including excellent resistance to high temperatures, self-lubricating properties, and strong wear resistance. They also have high chemical corrosion resistance, making them suitable for sealing in corrosive environments. Their flexibility and elasticity ensure reliable performance in high-pressure systems, making them ideal for use in industries such as metallurgy, chemical processing, and food manufacturing.

Advanced Ceramic Hub, established in 2016 in Colorado, USA, is a specialized supplier and manufacturer of graphite ceramic (C). With extensive expertise in supply and export, we offer competitive pricing and customized solutions tailored to specific requirements, ensuring outstanding quality and customer satisfaction. As a professional provider of ceramics, refractory metals, specialty alloys, spherical powders, and various advanced materials, we serve the research, development, and large-scale industrial production needs of the scientific and industrial sectors.

Enquiry Form

Similar Posts