Silicon Carbide Ceramic Ball

Silion Carbide Ceramic Ball

Silicon Carbide Ceramic Ball

Purity: ≥99%

Diameter: φ0.8-φ25.4 mm, or customized

  • Custom sizes and standard sizes in stock
  • Quick Lead Time
  • Competitive Price
5 star rating
5 star rating
5 star rating
5 star rating
5 star rating

Silicon Carbide Ceramic Ball is made from high-purity silicon carbide (SiC) through reaction bonding or sintering, offering excellent hardness, wear resistance, and corrosion resistance. As a leading supplier and manufacturer of premium silicon carbide products, we can supply high-quality silicon carbide ceramic balls with various specifications and competitive prices, offering customized solutions to meet specific requirements.

Or email us at sales@heegermaterials.com.

Silicon Carbide Ceramic Ball Data Sheet

Reference Code:HM2574
Purity:≥99%
Color:Black or Dark grey
Chemical Formula:SiC
Material Grades:Reaction Bonded SiC, Pressureless Sintered SiC, Hot-pressed SiC, etc.
Density:>3.2 g/cm³
Maximum Operating Temperature:1600°C
Diameter:φ0.8-φ25.4 mm, or customized
Precision Grade:G10,G16,G20,G40,G60,G100…

Silicon Carbide Ceramic Ball Description

Silicon Carbide (SiC) primarily exists in two crystal structures: the cubic β-SiC and the hexagonal α-SiC. Compared to other ceramics such as alumina (Al2O3) and boron carbide (B4C), SiC exhibits superior mechanical properties, better oxidation resistance, higher wear resistance, and a lower friction coefficient. Silicon Carbide Ceramic Ball is made from high-purity reaction-bonded silicon carbide (RBSiC), sintered silicon carbide (SSiC), or recrystallized silicon carbide, featuring high hardness, wear resistance, corrosion resistance, high-temperature resistance, electrical insulation, non-magnetic, low specific gravity, and other properties that are not found in metal materials. Advanced Ceramics Hub can supply high-precision silicon carbide ceramic balls with customized solutions for diverse industry and research applications.

Silicon Carbide Ceramic Ball Features

  • High rigidity, strength, and hardness.
  • Exceptional corrosion resistance, usable in strong acids and alkalis.
  • Heat resistant, stable below 1000°C.
  • Low density (3.2g/cm³), 60% lighter than steel, reducing wear and noise.
  • Low thermal expansion (3.2×10⁻⁶/K), 1/4 that of bearing steel, withstands temperature fluctuations.
  • Self-lubricating, suitable for vacuum and high-temperature use.
  • Excellent chemical resistance and high mechanical strength.

Silicon Carbide Ceramic Ball Applications

  • Mechanical Seals: Used in mechanical seals for high-temperature and high-pressure environments, offering excellent wear resistance and corrosion resistance.
  • Pumps and Valves: Used in core components of pumps and valves to enhance durability and performance.
  • Ball Milling and Grinding: Used as grinding media in ball mills, offering high hardness and wear resistance.
  • Bearings: Used in high-performance bearings to reduce friction and improve efficiency, commonly found in aerospace and other industries.
  • Heat Exchangers: Due to its excellent thermal conductivity, silicon carbide ceramic balls are used in heat exchangers to improve heat transfer efficiency.
  • Electronic Components: Used in high-performance electronic devices for good thermal stability and electrical insulation.

Silicon Carbide Material Properties

PropertyUnitsSiC
Densityg/cm33.1
HardnessGPa28
Flexural Strength @ 25°CMPa410
Poisson’s Ratio0.14
Fracture Toughness KIcMPa m1/24.60

PropertyUnitsSiC
Thermal Conductivity @ 25°CW/mK102.6
CTE1 @ 25°C ➞ 400°C10-6/K4.02
Maximum Temperature (Inert) 2°C1900

PropertyUnitsSiC
Volume Resistivity @ 25°Cohm-cm102-1011
Volume Resistivity @ 1000°Cohm-cm0.01 – 0.2

Silicon Carbide Material Grades

Reaction bonded silicon carbide (RBSiC) is made by mixing SiC, carbon, and binder, then infiltrating with silicon at high temperature. The vapor-phase method reduces free silicon to under 10%, improving performance. The result is a silicon-silicon carbide composite (SiSiC), not pure SiC.

SiC powder + C powder + binder mixed → forming → drying → protective atmosphere for degassing → high-temperature silicon infiltration → post-processing.

Reaction Bonded SiC Advantages:

  • Low sintering temperature
  • Low production cost
  • High material densification
  • Carbon and silicon carbide framework can be pre-machined into any shape
  • Shrinkage during sintering is within 3%, aiding dimension control
  • Significant reduction in the need for finishing, ideal for large, complex components

Reaction Bonded SiC Disadvantages:

  • Residual free silicon in the sintered body after processing
  • Reduced strength compared to products from other processes
  • Decreased wear resistance
  • Free silicon is not resistant to corrosion from alkaline substances and strong acids (e.g., hydrofluoric acid)
  • Limited usage due to corrosion susceptibility
  • High-temperature strength is impacted by free silicon
  • Typical usage temperature is limited to below 1350-1400°C

Pressureless sintered silicon carbide refers to the densification sintering of samples with varying shapes and sizes at 2000–2150°C without applying external pressure and using an inert gas atmosphere, by incorporating suitable sintering additives. The sintering process can be categorized into solid-phase sintering (SSiC) and liquid-phase sintering (LSiC).

Solid-Phase Sintering SiC (SSiC) Properties:

  • High Sintering Temperature: Requires a high sintering temperature (>2000°C).
  • High Purity Requirement: The raw materials must be of high purity.
  • Low Fracture Toughness: The sintered body has lower fracture toughness and tends to undergo transgranular fracture.
  • Clean Grain Boundaries: There is essentially no liquid phase, and the grain boundaries are relatively “clean.”
  • Stable High-Temperature Strength: High-temperature strength remains stable up to 1600°C without significant changes.
  • Grain Growth: At high temperatures, grain growth is easy, leading to poor grain uniformity.
  • High Crack Sensitivity: The material is highly sensitive to crack strength.

Liquid-Phase Sintering SiC (LSiC) Properties:

  • Lower Sintering Temperature: Compared to solid-state sintering, the sintering temperature is lower.
  • Smaller Grain Size: The grain size is smaller, with better uniformity of grains.
  • Improved Fracture Toughness: Due to the introduction of a liquid phase at the grain boundaries, the fracture mode shifts to intergranular fracture, significantly improving fracture toughness.
  • Additive Influence: Uses multi-component eutectic oxides (e.g., Y2O3-Al2O3) as sintering additives, promoting densification.
  • Reduced Crack Sensitivity: Liquid-phase sintering reduces the material’s sensitivity to crack strength.
  • Weakened Interface Bonding: The introduction of the liquid phase weakens the bonding strength at the grain boundaries.

Pressureless sintered boron carbide combines high purity and the excellent mechanical properties of boron carbide for use in both ballistic armor and semiconductor manufacturing.

Hot-Pressed SiC Advantages:

  • Enables sintering at lower temperatures and shorter times, resulting in fine grains, high relative density, and good mechanical properties.
  • The simultaneous heating and pressing facilitate particle contact diffusion and mass transfer.
  • Suitable for producing silicon carbide ceramics with good mechanical performance.

Hot-Pressed SiC Disadvantages:

  • The equipment and process are complex.
  • High demands on mold material.
  • Limited to producing simple-shaped parts.
  • Low production efficiency.
  • High production costs.

Recrystallized Silicon Carbide (RSiC) is a pure silicon carbide ceramic made via high-temperature evaporation-condensation, with a porous, high-strength structure, offering excellent heat, corrosion, and thermal shock resistance, used in kiln furniture, nozzles, and chemical components.

Recrystallized SiC Properties & Applications:

  • The sintering process, based on evaporation-condensation, doesn’t cause shrinkage, preventing deformation or cracking.
  • RSiC can be shaped through methods like casting, extrusion, and pressing, and its shrinkage-free firing allows for precise dimensions.
  • After firing, recrystallized RSiC contains 10%-20% residual porosity, primarily influenced by the green body’s porosity, providing a foundation for porosity control.
  • The sintering mechanism creates interconnected pores, making RSiC suitable for applications in exhaust and air filtration.
  • RSiC has clean grain boundaries, free from glass and metal impurities, ensuring high purity and retaining SiC’s superior properties for demanding high-performance applications.

Hot Isostatic Pressed Silicon Carbide (HIPSiC) is a high-performance ceramic produced via hot isostatic pressing. Under high temperature (around 2000 ℃) and uniform high-pressure gas (typically argon), silicon carbide powder is densified into a nearly pore-free structure.

Hot Isostatic Pressed SiC Advantages:

  • Uniform mictrostructure and fine grain size
  • Low sintering temperature and time
  • High density
  • High purity and component control

Hot Isostatic Pressed SiC Disadvantages:

  • Difficult packaging technology
  • High initial investment and operational costs
  • Limited for large or complex shapes

Spark Plasma Sintering Silicon Carbide is a high-performance ceramic produced using spark plasma sintering technology. This process employs pulsed current and pressure to rapidly density silicon carbide powder at relatively low temperatures (around 1800-2000 ℃) in a short time.

Spark Plasma Sintering SiC Properties:

  • Faster heating rate
  • Lower sintering temperature
  • Shorter sintering time
  • Fine and uniform grains
  • High density
  • Appliable for small and precision parts

Silicon Carbide Ceramic Machining

Ultrasonic Grinding Silicon Carbide

Silicon Carbide (SiC) is a highly durable ceramic material with extreme hardness (9.5 Mohs), thermal stability (up to 1650 ℃), and resistance to wear, corrosion, and high temperatures. However, machining silicon carbide presents challenges due to its extreme hardness and brittleness. Specialized techniques and tools are required to achieve precise cuts and shapes. The common machining methods include:

  • Diamond Grinding: Diamond tools are used to achieve smooth surfaces and precise shapes.
  • Laser Cutting: Suitable for cutting thin SiC materials. Laser cutting offers high precision and minimal material waste.
  • Ultrasonic Machining: This method uses high-frequency vibrations to cut and shape brittle materials like SiC without causing cracks.
  • Electrical Discharge Machining (EDM): A non-traditional method that uses electrical sparks to remove material, effective for hard ceramics like SiC.
  • Grinding With CBN Tools: Cubic boron nitride (CBN) tools can be used for grinding SiC, providing an alternative to diamond grinding for certain applications.
  • Water Jet Cutting: Using a high-pressure jet of water, sometimes with abrasive particles, to cut through SiC. This method is useful for cutting complex shapes.

Silicon Carbide Ceramic Packaging

Silicon Carbide ceramic products are typically packaged in vacuum-sealed bags to prevent moisture or contamination and wrapped with foam to cushion vibrations and impacts during transport, ensuring the quality of products in their original condition.

ceramic products packing-HM

Get A Quote

We will check and get back to you in 24 hours.

To customize your silicon carbide ceramic ball, please provide the following details:

  • Dimensions: Specify the diameter you need.
  • Material Grade: Specify the material grades.
  • Purity of the material
  • Tolerances: Specify the tolerances you can apcept.
  • Surface Finish: polished, rough, etc.
  • Quantity of the products you need
  • Alternatively, you can provide a drawing with your specifications.

Once we have these details, we can provide you with a quote within 24 hours.

We carry a wide variety of silicon carbide ceramic products in stock, and for these, there is generally no minimum order requirement. However, for custom orders, we typically set a minimum order value of $200. The lead time for stock items is usually 1-2 weeks, while custom orders usually take 3-4 weeks, depending on the specifics of the order.

Mohs hardness of 9.5 (second only to diamond), with superior wear resistance vs. metals or alumina ceramics.

Stable up to 1600℃ in inert atmospheres and 1200℃ in oxidizing envrionments.

  • Higher hardness
  • Better thermal conductivity (120-200 W/m·K)
  • Lower thermal expansion for extreme conditions

Advanced Ceramic Hub, established in 2016 in Colorado, USA, is a specialized supplier and manufacturer of silicon carbide ceramic (SiC). With extensive expertise in supply and export, we offer competitive pricing and customized solutions tailored to specific requirements, ensuring outstanding quality and customer satisfaction. As a professional provider of ceramics, refractory metals, specialty alloys, spherical powders, and various advanced materials, we serve the research, development, and large-scale industrial production needs of the scientific and industrial sectors.

Enquiry Form

Similar Posts